长治西门子PLC总代理商
一、项目简介
能源消耗是企业产品成本中重要的可控部分,降低能源消耗是企业降低成本的重要途径。烟草行业向来是耗能大户,随着国外先进技术和成套设备的大量引进,卷烟生产从过去的低速手工生产发展到高速全自动生产,对能源的需求越来越大,降低能源的损耗、合理调配能源将直接提高其生产效益。将军烟草集团有限公司成立于1993年,位于山东省济南市,是一家以烟草为主业、多元化经营的跨地区、跨行业、跨国界的企业集团。其核心企业济南卷烟厂拥有目前世界上先进的卷烟设备及行业技术中心。公司现有员工5000 余人,总资产 73 亿元,是全国烟草行业 36 家重点企业之一。
本能源监测系统主要用来对济南卷烟厂各部门的能源消耗情况进行监测、统计、报表和打印等。本系统的主要监测量包括全厂各部门的电、水、蒸汽、空压气等相关的参数。
二、 系统介绍
本系统由能源统计办公室、锅炉操作室和设备管理处组成三层能源监测管理系统。通过分布于全厂各个车间的传感器将蒸气、空压气、水量和电量233个点的参量采集到服务器中,锅炉操作室和设备管理处负责对实时参数和设备的监测;能源统计办公室实现数据的实时显示、能源消耗的当日和当月累积显示、累积量的日、月、时段数据的查询以及报表打印。统计办公室的能源监测评估程序完成班次的各项指标考核任务,对厂内的能源供应部门的投入、产出及能源使用用户单位的耗能情况进行统计分析,成本核算等,为提高厂内能源管理使用水平提供了可信依据。
本系统CPU主站选用Siemens 的SimaticS7-400的CPU414-2DP和S7-300的CPU314,400PLC主站配置9个ET200M子站。CPU414-2DP集成MPI通讯口和Profibus-DP通讯口,各子站与400PLC主站采用Profibus-DP方式相连,这样可在保证数据采集性能要求的前提下使硬件费用达到低;400PLC主站通过MPI接口与上位机实现通讯。300PLC主站通过MPI接口与上位机实现通讯。采用SimaticWinCC作为上位监控软件,采用VB6.0编辑统计办公室的能源监测评估程序 。
系统清单如下表
三、 控制系统构成
1.系统的结构:系统配置如图1所示。
图1 能源管理监测系统图
本系统共分为三大部分:上位监控中心、PLC主站、PLC从站。上位机由一台服务器和三台客户机组成。把服务器并入了企业网,这样,客户机的扩展变的异常容易和简单:只需把计算机并入局域网,进行简单的设置就可以作为一台客户机使用。400PLC主站通过MPI协议与服务器相连。MPI可用于单元级和现场级,用它可以非常经济的连接少数站。400主站与其子站之间通过ProfibusDP相连。这种组网方式可在保证数据采集性能要求的前提下,使硬件费用达到低。数据采集过程大体如下:现场传感器的输出信号由各站信号模板采集、转化为相应的数字信号通过通讯模块送到400PLC主站,400PLC主站把各站送来的数据按要求进行各种运算、处理后通过MPI网络传到服务器。客户机和服务器之间通过OPC方式进行数据的传递。
2.软件设计
本系统PLC主站、PLC从站的编程使用STEP7编写,实现PLC对过程数据的初步处理;上位机监控使用SIMATICWinCC编写服务器软件(WinCC Server)和客户端软件(WinCCClient),实现数据的实时显示、能源消耗的当日和当月累积显示、累积量的日、月、时段数据的查询以及报表打印;统计办公室的能源监测评估程序采用VisualBasic 6.0 语言编写,完成班次的各项指标考核任务。
(1)PLC主站程序:该程序包括6个OB块、20个FC块、15个DB块,完成对现场采集到的空压气、水蒸汽、电量和水量的数据的处理(包括蒸汽流量补偿和蒸汽温度计算),并记录各个变量的累积量。主程序(组织块OB1)流程图如下:
图3 主程序(组织块OB1)流程图
(2)上位机WinCC程序:根据客户的要求,使用WinCC编写友好的上位机人机界面。如下图:
图2 上位机空压气分布界面
3.统计办公室能源监测评估程序设计方案的选择
能源监测评估程序是用VB6.0开发的应用程序,安装在统计办公室的客户机上,要对各个部门进行月结考核,并据此进行奖金的评定。程序需要记录锅炉房、空压站、薄片车间、总配电室的70多个量的变化并进行相应的数据处理来实现对各部门各班次工人的考核,需要计算生产成本并打印详细月报表等,工作量十分大。在实践中,先后使用了以下几种方案实现程序和服务期间的通讯。
(1)方案一:使用VB6.0开发一个OPC客户端应用程序,利用该程序与服务器进行通讯。
缺点:客户端程序中没有实现较为完善的容错和故障诊断功能,当服务器出现短暂错误时造成OPC连接中段,造成死机。
(2)方案二:在客户端中加入诊断程序,通过不断连接服务器来判断服务器是否出现故障,若服务器状态不正常便重新启动该系统软件,实现故障的诊断和处理。
缺点:客户机与服务器频繁的连接与断开,造成服务器资源消耗大。
(3)方案三:OPC通讯分成两部分:部分,在客户机上开发一个小型的WinCC客户端应用程序,利用WinCC内部集成的OPC接口进行服务器和客户机之间的数据传输;第二部分,利用VB6.0开发一个OPC客户端应用程序,实现该程序与客户机上的WinCC进行通讯。
优点:使用WinCC内部集成的OPC接口进行服务器和客户机之间的数据传输,有较好的稳定性和较完善的故障诊断与处理,彻底避免死机。
(4)方案选择:鉴于以上几种方案的优缺点,选择第三种方案。如图3所示。
图3 方案三示意图
四、 控制系统完成的功能
1.系统主要功能
本系统主要用于采集各生产车间的蒸气、空压气、水量和电量四种参数进行统计计算,为生产安排提供数据依据。具体功能如下:
(1)实时显示:本系统包括五部分工况图实时显示生产参数,包括系统总工况图、制丝车间工况图、卷接包车间工况图、能源动力车间工况图、非生产部门工况图。
(2)状态曲线:显示各车间采集数据的状态曲线,包括总量、制丝车间、卷接包车间、能源动力和非生产等部门所采集数据瞬时变化趋势。
(3)统计计算:将要考核的各部门的当前半小时库中的数据进行整理、统计、生成8小时数据库和天数据库。
(4)统计报表:将各部门的数据按要求显示报表
(5)参数设置:对本系统用到的参数进行设置,包括:班次参数、班次表、口令设置和曲线参数设置。
2.项目中的技术难点
用户需要记录锅炉房,空压站,薄片车间,总配电室的70多个量的变化并进行相应的数据处理,有多种复杂报表输出要求:日报、旬报、月报、季报、年报,各种报表格式也不尽相同,这在wincc实现起来较为复杂,故考虑采用VB的灵活方便报表制作功能。在选择的方案中,WinCC.Client的角色非常特殊,它对于WinCC。Server来说是客户端,而对于能源管理软件来说则成了服务器端。
五、 结束语
本系统已经投入使用,系统运行可靠稳定,提高了数据的可靠性、正确性和计算准确率,减少了由于人为计算不准确和误差造成的损失。并且极大的节约了人员,减轻了实际操作人员的计算负担,并取得了良好的社会。
bbbbing Device(简称LD)设备是连接FF HSE网段和FF H1网段的网关设备。
一台bbbbing Device 设备可以连接多个H1网段,可以做H1网桥设备。
现场总线基金会(FF)在H1协议的基础上,将以太网技术作为底层协议加入到现场总线协议中,构建了基于工业以太网专题">工业以太网的现场总线协议HSE。FFHSE现场总线技术基于EEE802.3u 和ISO/IEC8802-3的高速以太网。使用标准的48位以太网地址,并通过小长度为64个字节的以太网报文来传递与H1总线相同的服务。FFHSE工业以太网为现场设备提供了更高的带宽。可以满足高速设备的需求。LD是将FFH1现场总线接HSE工业以太网的关键设备,它可以连接多种不同的设备和网段,以达到扩展FFH1应用的目的。用户可以通过现场总线的组态软件。完成对整个网络的组态、控制回路组态、控制逻辑组态、功能块连接、报警趋势组态、控制应用下载等功能。
性能指标:
支持标准的FF HSE通信协议和FF H1现场总线协议;
HSE端口 :10/100M BaseTX 以太网接口(RJ-45);
支持一或四路H1接口完成bbbbing Device功能;
具备网桥功能;
H1和HSE设备均具有互操作性;
供电 : 8 ~ 25VDC;
工作温度 : -25℃ ~ +60℃;
相对湿度 : <85 %;
通过HSE一致性操作测试;
设备使用:
LD网关设备面板主要由信号接口部分和电源接口部分所组成,电源接口是外界提供LD工作所需要的电压,信号接口部分是由4个FFH1协议接口和1个FFHSE所组成的。也就是说它可以将4个H1(31.25Kbit)网段和1个HSE(10M/100M)连接在一起,使两边的系统可以无缝连接。
LD网关设备在系统中对于用户是透明的。用户只需将LD设备接入系统中而无需再做其它操作。
系统的连接实物图如图所示:
以太网接口 FF H1接口
1 ------ TX+ 1 ------ 未用
2 ------ TX- 2 ------ RXD
3 ------ RX+ 3 ------ TXD
4 ------ 未用 4 ------ 未用
5 ------ 未用 5 ------ 地
6 ------ RX- 6 ------ 未用
7 ------ 未用 7 ------ 未用
8 ------ 未用
9 ------ 未用 8、9 ------ 未用
设备安装过程如下:
应将LD固定在底座的滑板上使其固定,再将现场的FF协议的H1接口依次连接到LD网关设备的4个H1接口(DB-9)上,而LD设备的RJ45接口通过双绞线连接到上位以太网中。
将电源插头接到LD的电源接口上,另一端接输入电压8V ~12VDC(10M设备)或24VDC(100M/10M自适应设备),当一切准备就绪后给系统上电,系统上电后自检,完成系统,网络,协议等初始化,此时LD即可开始工作。